$$ \newcommand{\abs}[1]{{\left\vert #1 \right\vert}} \newcommand{\R}{{\mathbb R}} \newcommand{\N}{{\mathbb N}} \newcommand{\C}{{\mathbb C}} \newcommand{\E}{{\mathbb E}} \newcommand{\X}{{\mathbb X}} \newcommand{\Y}{{\mathbb Y}} \newcommand{\d}{{\mathrm d}} \newcommand{\var}{{\mathrm{Var}\,}} \newcommand{\supp}{{\mathrm{supp}\,}} \newcommand{\ne}{{\mathrm{ne}\,}} \newcommand{\cases}[1]{{\begin{cases}#1\end{cases}}} \newcommand{\align}[1]{{\begin{align*}#1\end{align*}}} \newcommand{\argmax}[1]{{\underset{#1}{\mathrm{argmax}}\, }} \newcommand{\argmin}[1]{{\underset{#1}{\mathrm{argmin}}\, }} \newcommand{\dkl}{D_{\textsf{KL}}} \newcommand{\vvert}{\,\vert\vert\,} \newcommand{\indep}{\perp\!\!\!\perp} \newcommand{\nindep}{\centernot\indep} \newcommand{\sumint}{\ \ \ \mathclap{\int}\mathclap{\sum} \ \ \ } \newcommand{\constwrt}[1]{\underset{\textsf{wrt.} \ #1}{\mathrm{const.}}} $$

Probabilistic Machine Learning - Notes

Notes on the "Probabilistic Machine Learning" Lecture by Prof. Dr. Philipp Hennig from University of Tübingen Germany) 2020 / 2021. Lectures on YouTube © Philipp Hennig / University of Tübingen, 2020 CC BY-NC-SA 3.0. Lots of additional details can be found in the freely available book Gaussian Processes for Machine Learning by Rasmussen & Williams (2006). I personally also found the Statistics 260 Lecture by Michael Jordan at Berkeley EECS helpful, which I last checked 11-10-2022 (europ.).

Latest Changes: (europ.).

Notation

The Toolbox

Throughout the lecture and these notes we keep track of a "Toolbox" for Modelling- and Computation-Techniques. Directed Graphical Models are the first entry:

Modelling Techniques Computation Techniques

Preface: A Short Primer on Measure Theory

Probability Theory

Random Variables

Continuous Random Variables

Expectations

Monte Carlo Method

Sampling by Transformation

Rejection Sampling

Importance Sampling

Markov Chain Monte Carlo Methods

The Metropolis-Hastings Method

Gibbs Sampling

Hamiltonian Monte Carlo Methods

The Gaussian Distribution

Gaussian Parametric Regression

Learning Representations

Gaussian Processes

Understanding Kernels

Example of Gaussian Process Regression

Gauss-Markov Models

Gaussian Process Classification

Generalized Linear Models

Bayesian Neural Networks

Exponential Families

Directed Graphical Models

Undirected Graphical Models

Factor Graphs

Discrete Variables on Factor Graphs

General Variables on Factor Graphs

Topic Modelling I - PCA

Topic Modelling II - Latent Dirichlet Allocation

Mixture Models

Expectation Maximization Algorithm I

Expectation Maximization Algorithm II

Variational Inference

VI Applied I - Gaussian-Mixture-Model

VI Applied II - Topic Model

VI Extended - Customizing Algorithms

Making Decisions