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1 Matrix Decomposition and Optimization
1.1 Matrices Introduction
Basic Notations

• Matrices with m rows and n columns will be denoted as A ∈ Km×n, where typically
K ∈ {C, R}.

• A single entry of the matrix A is therefore denoted as Aij.

• Complete rows and columns (as vectors) will be denoted as A(i)) for rows and A(j)

for columns.

• The n× n-identity matrix is denoted as In.

• The matrixproduct between A ∈ Kl×m and B ∈ Km×n is a matrix C ∈ Kl×n with
the entries

Cik =
m∑

j=1
AijBjk .

• A matrix-vector-product is therefore denoted as:

(Av)k =
m∑

i=1
Akmvm

• An m × n matrix can be constructed by the “matrix”-product of an Rm-vector a
with a transposed Rn-vector b:

A = abT =



a1b1 a1b2 ... a1bn

a2b1
. . . ...

... . . . ...
amb1 ... ... ambn

 ⇒ A(j) = bja & A(i) = aib
T

Trasopsed and Adjoint Matrices

• The transopsed AT of a matrix A has the entries (AT )ij = Aji.

• The adjoint or Hermetian transposed A∗ of a matrix A has the entries (A∗)ij = Āji,
where ā denotes the complex conjugated of a comlpex number a ∈ C.

• Every quadratic Matrix A ∈ Cn×n can be decomposed into a Hermitian and an
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anti-Hermitian part via:

A = 1
2 (A+ A∗)︸ ︷︷ ︸

Hermitian

+1
2 (A− A∗)︸ ︷︷ ︸

anti-Hermitian

• In the real case, Hermetian matrices are called symmetric matrices and all the
properties still hold replacing ·∗ with ·T .

Scalar Product and basis

• The (complex) scalar product for x, y ∈ Cm is defined as

⟨x, y⟩ =
m∑

i=1
xiȳi ,

which is called the Euclidiean scalar product in the case x, y ∈ Rm.

• x, y are called orthogonal if ⟨x, y⟩ = 0.

• A basis x1, ..., xm of Km is called orthonormal if

⟨xi, yj⟩ = δij =

1, i = j

0, i ̸= j
.

Semi Symmetric inner Product

• Given a C-vector space V a mapping ⟨. , .⟩ : V × V → C is called a semi symmetric
inner product if the following properties hold:

a) Positive Definiteness: For all v ∈ V, ⟨v, v⟩ ≥ 0.

b) Definiteness: If ⟨v, v⟩ = 0, then v = 0.

c) Linearity (in the first argument): For all λ ∈ C and u, v, w ∈ V

⟨v + λu, w⟩ = ⟨v, w⟩ + λ⟨u, w⟩ .

d) (Semi) Symmetry: For all u, v ∈ V : ⟨u, v⟩ = ⟨v, u⟩.

• (c) and (d) together yield: ⟨v, λu+ w⟩ = λ̄⟨v, u⟩ + ⟨v, w⟩.

• If we constrain V to V ∈ R, then this inner product is truly symmetric and thus
linear in both arguments.
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Orthogonal und unitary matrices

• A ∈ Rm×m is called orthogonal if ATA = AAT = Im.

• A ∈ Cm×m is called unitary if A∗A = AA∗ = Im.

Range and rank of a matrix

• The range of a matrix A ∈ Km×n is defined as

ran(A) = {Ax : x ∈ Km} = span{A(j) : j = 1, ..., n} ⊂ Km

• The rank of a matrix A ∈ Km×n is defined as: rank(A) = dim(ranA) = dim(ranAT ).

• A matrix A ∈ Km×n has full rank if rank(A) = min{m,n}.

• The rank of a matrix can be described as the number of linear independent columns
or rows in the matrix.

Eigenvalues and eigenvectors

• For A ∈ Km×n, λ ∈ K is called an eigenvalue of A with corresponding eigenvector
v ∈ Km \ {0} if Av = λv.

• Eigenvalues are the roots of the characteristic polynomial χA(λ) = det(A− λI).

• If A ∈ Km×m is Hermitian (A = A∗), then all eigenvalues are real and there exists
an orthonormal basis v1, ..., vn ∈ Km of eigenvectors. With V = (v1|...|vn) ∈ Km×m

it holds

A = V DV ∗ =
m∑

j=1
λjvjv

∗
j with D = diag(λ1, ..., λm) .

Trace

• The trace tr : Cm×m → C is defined as the sum of the entries of the diagonal:

tr(A) =
m∑

i=1
Aii .

• The trace has the properties:

a) Cyclicity: tr(AB) = tr(BA)

b) Invariance under unitary conjugation:

tr(UAU∗) = tr(A)
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c) Trace and eigenvalues: If λ1, ..., λm are the eigenvalues of A ∈ Cm×m, the trace
is calculated by

tr(A) =
m∑

i=1
λi

d) Additivity: tr(A+ cB) = tr(A) + ctr(B), c ∈ R.

e) Invariance under adjoining: tr(A∗) = tr(A).

• The Frobenius scalar product of two matrices A,B ∈ Cm×n is defined as

⟨A,B⟩F = tr(AB∗) =
m∑

i=1

n∑
j=1

AijB̄ij

• The Frobenius norm / Hilbert-Schmidt-norm is therefore defined as

||A||F =
√

⟨A,A⟩F = ... =
√√√√ m∑

i=1
λi(A∗A),

where λi(A∗A) are the eigenvalues of A∗A. (See below for confirmation that it is
well defined and indeed a norm).

Norms

• For a K-vectorspace V a norm ||.|| : V → R+ = {x ∈ R, x ≥ 0} is a function
satisfying

a) ||v|| = 0 if and only if v = 0

b) ||λv|| = |λ| ||v|| for all v ∈ V and λ ∈ K.

c) Tranglie inequality: ||v + w|| ≤ ||x|| + ||w|| for all v, w ∈ V .

• If a) is weakened to ||v|| = 0 if v = 0 (thus ||v|| = 0 does not imply ⇒ v = 0), ||.||
is calles a semi-norm.

• The probably most important norm in linear algebra is the euclidian norm

||x||2 =
√

⟨x, x⟩ .

• Indeed every inner product induces a corresponding norm.
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Definite matrices

• A hermitian matrix A = A∗ ∈ Cm×m is called positive (semi) definite if

x∗Ax > 0 (≥ 0) for all x ∈ Cm \ {0},

and negative (semi) definite respectivley.

• A hermitian matrix A = A∗ ∈ Cm×m is positive (semi) definite if and only if
λi(A) > 0 (≥ 0) for all i = 1, ...,m.

• Note that in case of the Frobenius norm A∗A is obviously hermitian and indeed
positive semidefinite1, thus the Frobenius norm is well defined.

Operator norm

• For X = (Rn, ||.||X), Y = (Rm, ||.||Y ) the operator norm of A ∈ Rm×n (where
A : X → Y ) is defined as

||A||X→Y = sup
x∈Rn\{0}

||Ax||Y
||x||X

= sup
x∈Rn

||x||X=1

||Ax||Y

• An concrete example for an operator norm is the spectral norm

||A||l2→l2 = max
j

√
λ(A∗A) ,

which can be shown to be unitary invariant (because of properties of the determinant
and such the characteristic polynomal).

Cauchy-Schwarz inequality

Let V be a C-vectorspace and a, b ∈ V . Additionally let ⟨. , .⟩ : V × V → C be an
semi symmetric inner product with corresponding norm ||.||. Then the following equation
holds:

|⟨a, b⟩| ≤ ||a|| · ||b||

1Note: x∗A∗Ax = ⟨Ax, Ax⟩ = ||Ax||2 ≥ 0.
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Hölder inequality

Let u, v ∈ Rn and p, q ∈ R such that 1/p+ 1/q = 1. Then

n∑
i=1

|uivi| ≤
(

n∑
i=1

|ui|p
) 1

p
(

n∑
i=1

|vi|q
) 1

q

Multidimensioanl Taylors theorem:

Let f : Rn → R be twice continuously differentiable. Then for some z ∈ {λx+(1−λ)y|λ ∈
[0, 1]} one can evaluate f(y) via:

f(y) = f(x) + ⟨∇f(x), y − x⟩ + 1
2(y − x)TD2f(z)(y − x),

which is the taylor formula with remainder for n = 2. D2f denotes the Hessian Matrix
as declared below.

1.2 Singular value decomposition
Definition of the SVD

• The SVD of a matrix A ∈ Rm×n consists of the factorisation of A into three matrices:

A = UΣV T ,

where U ∈ Rm×m and V ∈ Rn×n are orthogonal and Σ ∈ Rm×n is diagonal with
Σ = diag(σ1, ..., σk), k = min{m,n}, with σ1 ≥ σ2 ≥ ... ≥ σk.

• In contrast to the eigenvalue decomposition (EVD), Σ is not necessarily quadratic,
such that with Σ′ ∈ Rk×k defined, Σ takes the form (0 is matrix of zeros in needed
size):

Σ =
(
Σ′ 0

)
, m ≤ n , Σ =

Σ′

0

 , n < m and Σ =
Σ′ 0

0 0

 . (1.1)

Left singular Matrix and Linear Subspaces for data

• E.g. Approach: Given „data points“ in (the columns of) a matrix A, one would like
to find the k-dimensional subspace, that best finds the data points A(1), ..., A(n) ∈
Rm, e.g. in the case of k = 1 or k = 2 the best line or plane.
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• E.g. m = 2 and k = 1 via Pythagoras the task is derived, to find u such that:

max
||u||2=1

n∑
j=1

|⟨A(j), u⟩|2 = max
||u||2=1

||ATu||22 = max
||u||2=1

||Au||22

• There are other possible choices than to minimize the euclidean distance, which are
computationally more complex but might have advantages in some cases.

• Left singular vectors and values: For k < m ∈ N the left singular values are
given by:

σ1 = max
||u||2=1

||Au||2 = ||A||l2→l2 ,

σr = max
u⊥u1,...,ur−1

||u||2=1

||Au||2 ,

and stop once σr+1 = 0 or r = m, with the corresponding left singular vectors as:

u1 = argmax
||u||2=1

||Au||2 = ||A||l2→l2 ,

ur = argmax
u⊥u1,...,ur−1

||u||2=1

||Au||2 ,

• For a matrix A ∈ Rm×n with singular values σ1, ..., σr it holds

||A||F =
√√√√ r∑

j=1
σ2

r .

• It can be shown, that this is in a sense actually the best possible k-dimensional
subspace, by using orthogonal projections.

Orthogonal projection

• LetW ⊂ Rm be a subspace of dimension k with orthonormal basis (ONB) w1, ..., wk ∈
Rm and let u ∈ Rm.

a) The minimizer ŵ of minw∈W ||u− w||2 exists, is unique and given by

ŵ =
k∑

j=1
⟨u, wj⟩wj .
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Therefore the orthogonal projection

Pw : Rm → W, u 7→ argmin
w∈W

||u− w||2

is linear and Pwu is given by

Pwu =
k∑

j=1
⟨u, wj⟩wj .

b) The difference vector u− ŵ and ŵ are orthogonal.

c) It holds:

||ŵ||22 = ||Pwu|||22 =
k∑

j=1
⟨u, wj⟩2 and ||u− ŵ||22 = ||u||22 −

k∑
j=1

⟨u, wj⟩2

• Using this definition one can show the optimality of the decomposition above:

Left singular subspace minimizes distance: Let A ∈ Rm×n with left singular
vectors u1, ..., ur. For k = 1, ..., r define Uk = span{u1, ..., uk}. Then Uk minimizes

d(A, V )2 =
n∑

j=1
d(A(j), V )2 =

n∑
j=1

||A(j) − PVA(j)||22

over all k-dimensional subspaces V , i.e. Uk is the best k-dimensional approximation
to the columns of A.

Right singular vectors

• Given a matrix A ∈ Rm×n with left singular values and vectors denoted as above
one can define the right singular vectors as

vj = 1
σj

ATuj , j = 1, ..., r .

These are orthonormal.

• In this case it holds ran(A) = span{v1, ..., vr} and thus rank(A) = r.
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Formulation and computation of the SVD

• Reduced singular value decomposition: Given a matrix A ∈ Rm×n with singu-
lar values σ1, ..., σr, left singular vectors u1, ..., ur and right singular vectors v1, ..., vr

one can write:

A =
r∑

j=1
σjujv

T
j = UΣV T ,

with U = (u1|...|ur) ∈ Rm×r , V = (v1|...|vr) ∈ Rn×r and Σ = diag(σ1, ..., σr).

• In case of the reduced SVD one has to be careful with the following: Because r
might be smaller than min{m,n}, i.e. A is not of full rank, U and V are not
orthogonal in the following sense. If r < m, then UUT is an m×m matrix, but
only of rank r such that UUT is not the identity matrix. The only thing that always
(also in case of the reduced SVD) holds is: UTU = Ir, and for V respectively.

• Singular value decomposition: In the case r < m complete u1, ..., ur to an ONB
of Rm and set Ũ = (u1|...|um) ∈ Rm×m. In the case r < n complete v1, ..., vr to an
ONB of Rn and set Ṽ = (v1|...|vm) ∈ Rn×n. Then the singular value decomposition
of A is given as

A = ŨΣ̃Ṽ T ,

with Σ̃ as in (1.1).

• Obtaining singular values: The singular values of A are the square roots of the
nonzero eigenvalues of AAT and ATA:

σj =
√
λ(ATA) =

√
λ(AAT ) .

• Obtaining singular vectors: The left singular vectors of A are the correspond-
ing eigenvectors of AAT . The right singular vectors of A are the corresponding
eigenvectors of ATA.

• The Moore-Penrose-Pseudo-Inverse: Given a Matrix A ∈ Rm×n with reduced
SVD as above, the Moore-Penrose-Pseudo-Inverse A+ ∈ Rn×m is given by

A† = V Σ−1UT .

If ATA ∈ Rn×n or AAT ∈ Rm×m is invertible then

A† = (ATA)−1AT or A† = AT (AAT )−1 respectively.
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Least Squares Problems

• Let A ∈ Rm×n and y ∈ Rm. Define M := argmin
x∈Rn

||Ax−y||2, i.e. the set of minimizers

of ||Ax− y||2. The optimization problem

min
x∈M

||x||2

possesses the unique minimizer

x̂ = A†y.

• Let A ∈ Rm×n, m ≥ n, be of full rank (rankA = n) and y ∈ Rm. Then the least
squares problem minx∈Rn ||Ax− y||2, has the unique solution

x̂ = A†y.

Principal Component Analysis (PCA)

• Start-point: A ∈ Rm×n data matrix, with columns A(j) as data points.

• Idea: Fir an m-dimensional ellipsoid to data such that each axis of the ellipsoid
represents a principle component.

• Process: PCA transforms the data via orthogonal basis transformation with the left
singular vector matrix:

T(j) = (ATU)(j) ⇔ T = (ATU)T = ΣV T .

Thus the entries of of (T(j))i, j = 1, ..., n have decreasing empirical variance with i.

• Replacing T with Tk (V with Vk) yields a low rank approximation. Doing this,
one omits the dimensions with low variance. E.g. if m = 3 the data points are
3D-vectors. If these data points essentially align with a given plane, a PCA with
a 2D-approximation would be legitimized. One would get two orthogonal vectors
which span the observed plane.

Covariance matrices

• The covariance matrix of a mean zero random vector X is defined as C = E(XXT ).
The corresponding empirical covariance matrix given data points as columns of a
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matrix A is therefore:

Ĉ = 1
n
AAT . (1.2)

• Performing a PCA (not low rank!) on A yields:

TT T = ΣΣT ,

which means, that the basis transformation with U diagonalizes the covariance
matrix.

1.3 Optimization
Unconstrained optimization problems

• For a function f : Rn → R an unconstrained optimization problem is of the
form minx∈Rn f(x) or maxx∈Rn f(x).

• A point x0 ∈ Rn with f(x0) ≤ f(x) (f(x0) ≥ f(x)) for all x ∈ Rn is called a
(global) minimizer (maximizer) and the value f(x0) is called global minimum
(maximum).

• A point x0 ∈ Rn is called local minimizer (maximizer) if there exists δ > 0 such
that f(x0) ≤ f(x) (f(x0) ≥ f(x)) for all x ∈ Rn with ||x − x0||2 < δ. The value
f(x0) is then called local minimum (maximum).

• Sometimes the optimization problems are defined over subsets D ⊂ Rn.

Optimization problems in data science

• Supervised learning: In supervised learning one is given input/output pairs
(xi, yi), xi ∈ Rn, yi ∈ R, i = 1, ...,m and wants to find a (hypothesis) function
h such that h(xi) ≈ yi. Typically h is chosen from a pre defined function-space H.
Then one optimizes the parameters b of hb by minimizing a function of the kind:

f(b) =
m∑

i=1
l(hb(xi), yi) (1.3)

where l is a loss function (e.g. l(z, y) = (z − y)2, l(z, y) = |z − y|, l(z, y) =
max{0, 1 − zy}).

• Norm approximation: Given a data vector y ∈ Rm and fixed vectors a1, ..., an ∈
Rm, one wants to fit a linear combination Ax, were A = (a1|...|an) that minimizes
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a given norm ||.|| on Rm. This leads to

min
x∈Rm

||Ax− y|| .

Sometimes this is „regularized“ by adding a term λ · ||x||′ with another norm ||.||′,
which results in a tendency to keep the values of x rather small.

• Maximum likelihood estimation: Consider a family px : Rm → R of distribution
functions on Rm, indexed b a parameter x ∈ Rn. Given data y1, ..., yk distributed
according to px for unknown x ∈ Rn, the task is to estimate the distribution px, i.e.
x for the data. Given data y ∈ Rm, a maximum likelihood estimator is a maximizer
x̂ML of

max
x∈Rm

px(y) .

• Linear measurements with i. i. d. noise: Consider a model yi = ⟨ai, x⟩ +
ξi, ai ∈ Rn, i = 1, ...,m, where ξi are independent random variables distributed
according to p. Then (by independence)

px(y) =
m∏

i=1
p(yi − ⟨ai, x⟩) .

Maximizing px(y) is furthermore equivalent to maximizing log(px(y)). In case of
Gaussian distribution of the xii this becomes a least square problem, e.g. a norm
approximation with the 2-norm.

Optimality conditions

• Gradient For a differentiable function f : D → R, D ⊂ Rn open, the gradient is
defined as

∇f(x) =
(
∂f

∂x1
(x), ... ∂f

∂xn

(x)
)T

.

• Hessian Matrix: For a twice differentiable function f : D → R, D ⊂ Rn open,
the Hessian is defined as

[
D2f(x)

]
ij

= ∂2f

∂xi ∂xj

.

Theorem of Schwarz: If f is twice continuously differentiable then D2fT = D2f ,
because for such function the derivatives commute.

• Necessary condition for local optimizers: Let f : D → R, D ⊂ Rn open, be
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a differentiable function and x ∈ D a local minimizer or maximizer of f . Then
∇f(x) = 0. A point x ∈ D with ∇f(x) = 0 is also called critical or stationary
point of f .

• Note: If x ∈ D is such that f is not differentiable in x, x might still be a local
optimum (recall e.g. f(x) = |x|).

• Saddle point: A point (x0, y0) ∈ D ⊂ (Rn × Rk) open is called a saddle point of
f : D → R if f is a critical point, but neither a local minimum nor a local maximum.

• Sufficient conditions: Let f : D → R, D ⊂ Rn open, be twice continuously
differentiable. A point x0 ∈ D with ∇f(x0) = 0 is

a) a local minimizer if D2f is positive definite.

b) a local maximizer if D2f is negative definite.

c) a saddle point if D2f is indefinite.

Convexity

• Convex sets: A subset D ⊂ Rn is called convex if for all x, y ∈ D, the convex
combination λx+ (1 − λ)y ∈ D for all λ ∈ [0, 1].

• Convex functions: A function f : D → R, D ⊂ Rn is called convex, if D is convex
and for all x, y ∈ D and λ ∈ [0, 1]

f
(
λx+ (1 − λ)y

)
≤ λf(x) + (1 − λ)f(y) .

If the inequality is strict, then the function is called strictly convex. Contrary f is
called (strictly) concave if −f is (strictly) convex.

• Optimizers of convex functions: Local optimizers of convex functions are global
optimizers.

• Conditions for convexity: Let f : D → R, D ⊂ Rn open and convex.

a) If f is differentiable, then f is convex if and only if for all x, y ∈ D

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ .

b) If f is twice continuously differentiable, then f is convex if and only if D2f(x)
is positive semi-definite for all x ∈ D.
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Descent methods

• Goal: The goal of descent methods is to find at least an approximation of minimizers
x of minx∈D f(x) by computing a sequence x(0), x(1), x(2), ... in D that converges to
x, which is then called a minimizing sequence.
Usually, the iteration starts with some initial x0 ∈ D and take the form x(k+1) +
t(k) ∆x(k), where ∆x(k) is the search direction and t(k) is the step size or step length.

• Descent direction: A descent direction always fulfils

⟨∇f(x),∆x⟩ < 0 .

• Descent methods: In case of a descent method

f
(
x(k+1)

)
< f

(
x(k)

)

is required except when x(k) is optimal. If f is convex and differentiable then
⟨∇f(x(k)), y − x(k)⟩ ≥ 0 would imply f(y) ≥ f(x(k)).

• Gradient descent: In case of the gradient descent method one chooses ∆x(k) =
−∇f(x(k)).

• Determine step sizes: There are plenty methods for determine suitable step sizes
for descent methods. One of it is the backtracking line search algorithm. Starting
with t = 1 one repeats updating t = βt with β ∈ (0, 1) until the stopping condition

f(x+ t∆x) ≤ f(x) + α t ⟨∇f(x),∆x⟩, α ∈ (0, 1/2)

is fulfilled. This is called “line search” because there is a graphical interpretation of
the condition as a line in t. A complete descent algorithm with backtracking line
search would then first set up an initial x0, then perform backtracking to determine
the t-value for the first step with backtracking and update x with the found step size
t. This is iteratively executed until the stopping condition (see below) is fulfilled.

• Stopping condition: The stopping condition for descent methods is typically of
the kind ||∇f(x(k))||2 < ε for some desired accuracy parameter ε > 0.

• Stochastic gradient descent: Gradient descent is typically used for supervised
learning techniques and corresponding cost functions (like in eq. 1.3). Because
calculating the gradient for large datasets can be very computationally expensive,
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a common variation of the standards gradient descent (also called batch gradient
descent) is, to use only a random subset of the data in each step.

Constrained Optimization

• Objective and constraints: A general constrained optimization problem is of the
form

min
x∈D

f0(x) subject to

fi(x) ≤ 0 i = 1, ...,m

hi(x) = 0 i = 1, ..., p

where f0 : D → R, D ⊂ Rn is called the objective functions, fi : D → R are
called inequality constraint functions and hi : D → R are called equality constraint
functions. A point x ∈ D is called feasible if all constraints are satisfied. The set
of feasible points is called feasible set or constraint set.

• Optimal value: The optimal value of a constrained optimization problem is defined
as:

p∗ = inf
{
f0(x)

∣∣∣fi(x) ≤ 0, i = 1, ...,m , hj(x) = 0, j = 1, ..., p
}

where p∗ = ± inf is actually allowed. If a problem is infeasible, then p∗ = inf.

• Equivalent optimization problems: A key procedure to solve constrained op-
timization problems is to convert the problem into an easier solvable, for example
obtaining the feasible set beforehand.

• Convex optimization problems: A convex optimization problem is of the form

min
x∈D

f0(x) subject to

fi(x) ≤ 0 i = 1, ...,m

Ax = 0 A ∈ Rp×n

where f0, f1, ..., fm are convex functions on Rn.

• As suggested by the name a local minimizer of a convex optimization problem is a
global optimizer.

• Optimality condition: Assume f0 : D → R, D ⊂ Rn open and convex, is convex
and differentiable. Let X be the feasible set. Then x ∈ X is optimal if and only if

⟨∇f0(x), y − x⟩ ≥ 0 for all y ∈ X .
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The Lagrangian

• Definition of the Lagrangian: Consider a constraint optimization function as
above. Then the Lagrangian L : D ×Rm ×Rp → R is defined as

L(x, λ, ν) = f0(x) +
m∑

i=1
λifi(x) +

p∑
j=1

νjhj(x) .

The coefficients λi and νj are called Lagrange multipliers. This can also be written
with λ = (λ1, ..., λm)T and f̃(x) = (f1(x), ..., fp(x))T using λT f̃(x) and for the ν’s
and h’s respectively.

• Lagrange dual function: The Lagrange dual function g : Rm ×Rp → R is defined
by

g(λ, ν) = inf
x∈D

L(x, λ, ν) .

• Lagrange dual problem: The Lagrange dual problem is given by:

max g(λ, ν) subject to λ ≥ 0 .

The original problem is also called primal problem. A maximizer (λ∗, ν∗) of the
dual problem is called dual optimal or optimal Lagrange multiplier.

• Duality: Let d∗ = sup{g(λ, ν)|λ ≥ 0, ν ∈ Rp} be the optimal value of a dual
problem for some given primal problem with optimal value p∗. Then weak duality
always holds, which means:

d∗ ≤ p∗ .

Solving the dual problem thus yields a lower bound for p∗. The value p∗ − d∗ is
called duality gap.
Furthermore if

d∗ = p∗

we say that strong duality holds.

• Critical points using the Lagrangian: In case of only equality constraint func-
tions can find critical points of the optimization problem by solving

∇x,νL(x, ν) = 0 .
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• Slaters theorem: Given primal and dual problem of the discussed forms and the
primal problem is convex with D = Rn and that there exists x ∈ Rn with

fi(x) < 0, i = 1, ...,m and Ax = b .

Then strong duality holds. Additionally if the first k functions fi, i = 1, ..., k are
affine2, then we only need that x is feasible and fi(x) < 0, for i = k + 1, ...,m.

Example for a constrained optimization Problem

• Lets consider the function f : Rn → R, x 7→ ||x||22, which is to be minimized, with
constrain Ax = y for A ∈ Rm×n, b ∈ Rm.

• The Lagragian is therefore given by

L(x, ν) = xTx+
m∑

j=1
νj(aT

j x− bj) = ||x||22 + νT (Ax− b) .

• The gradient and Hessian of the Lagrangian with respect to x are given by

∇x(x, ν)L = 2x+ ATν and D2
xL(x, ν) = 2 cot In.

Thus L is a convex function (in x) and x = −ATν/2 is a global minimum.

• Therefore the Lagrange dual function is given by

g(ν) = inf
x
L(x, ν) = −1

4 ||ATν||22 − νT b .

• Using the definition p∗ = inf{||x||22 |Ax = b} and using the fact, that weak duality
always holds one directly obtains:

g(ν) ≤ p∗ ∀ ν ∈ Rm .

• By Slaters theorem additionally strong duality holds, if the problem is feasible,
meaning if b ∈ range(A).

Optimality conditions using Lagrangians

• Complementary slackness: Assume strong duality holds and let x∗ and (λ∗, ν∗)
be primal and dual optimal. Then it holds

λ∗T f̃(x∗) = 0 .
2Affine functions are linear functions added with a constant: Simplified f(x) = Ax + b, A ∈ Rm×n.
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• Karush-Kuhn-Tucker (KKT) optimality conditions: Assume f0, f1, ..., fm

and h1, ..., hp are differentiable. Since x∗ minimizes x 7→ L(x, λ∗, ν∗) and due to
feasibility and complementary slackness the following 5 conditions hold:

a) ∇xL(x∗, λ∗, ν∗) = 0

b) fi(x∗) ≤ 0, i = 1, ...,m

c) hi(x∗) = 0, i = 1, ..., p

d) λ∗
i ≥ 0, i = 1, ...,m

e) λ∗
i fi(x∗) = 0, i = 1, ...,m

For any optimization problem with differentiable objective and constraint functions
for which strong duality holds, any pair of primal and dual optimal points must sat-
isfy the KKT conditions. Conversely, if the primal problem is convex and x∗, (λ∗, ν∗)
satisfy the KKT conditions they are a primal/dual optimal pair.
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2 Probability
Sets and Basic Set Operations

• Just a few important properties and formulas:

a) Commutative laws: B ∪ C = C ∪B, and B ∩ C = C ∩B

b) Associative laws: A∪ (B ∪C) = (A∪B) ∪C, and A∩ (B ∩C) = (A∩B) ∩C

c) de Morgan laws:
(⋃

i∈I

Ai

)c

=
⋂
i∈I

Ac
i and

(⋂
i∈I

Ai

)c

=
⋃
i∈I

Ac
i

d) Further properties:

A \B = A ∩Bc

(A \B) ∩B = ∅

(A \B) ∪B = A ∪B

A \ (A \B) = A ∩B

A \ (B ∪ C) = (A \B) ∩ (A \ C)

A \ (B ∩ C) = (A \B) ∪ (A \ C)

• If Ak, k ∈ I, are pairwise disjoint, that is Al ∩ Ak = ∅ for all l, k ∈ I with l ̸= k,
then the union of these sets will also be denoted by

∑
k∈I

Ak .

• Cartesian product For sets A and B, the set

A×B = {(a, b)|a ∈ A, b ∈ B}

is called Cartesian product of A and B. It is generalized to k ≥ 2 sets via the
symbol ×k

i=1 Ai. An important special case is Rk = ×k

i=1 R = {(x1, ..., xk)|xi ∈
R, i ∈ N ∩ [1, k]}.

2.1 Foundations of Probability
Defining probability and stochastic models

• Sigma-algebra: Let Ω ̸= ∅. A family A of subsets of Ω is called σ-algebra (-filed)
if
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a) Ω ∈ A,

b) if A ∈ A then Ac ∈ A for all A ∈ A,

c) ⋃∞
i=1 An ∈ A for all sequences A1, A2, ... of sets from A.

(Ω,A) is called a (measurable) space.

• Kolmogorov’ axioms: A map P : A → [0, 1] defined on a σ-algebra A on Ω ̸= ∅
is called probability measure of probability distribution if

a) P (Ω) = 1,

b) P (⋃∞
i=1 An) = ∑∞

i=1 P (An) for all pairwise disjoint (Ai)i∈N ⊂ A.

(Ω,A, P ) is called probability space.

• A sigma algebra can in most discrete cases simply be defined as the power set P(Ω)
of Ω. In the continuous case one has to define another type of set with special
features called the Borel-algebra.

• Laplace space: Let n ∈ N and ω1, ..., ωn be different objects. Then, the probability
space (Ω,A, P ) with Ω = ω1, ..., ωn, A = P(Ω) and P (A) = |A|/n for A ⊆ Ω is called
Laplace space.

• Properties of probability measures: Let (Ω,A, P ) be a probability space and
A,B ∈ A. Then:

a) P (A ∪B) = P (A) + P (B) − P (A ∩B)

b) P (B \ A) = P (B) − P (A) if A ⊆ B

c) P (Ac) = 1 − P (A)

d) A ⊆ B ⇒ P (A) ≤ P (B)

Conditional Probability

• Definition of conditional probability: Let (Ω,A, P ) be a probability space. For
every B ∈ A with P (B) > 0

P (A|B) = P (A ∩B)
P (B) , A ∈ A ,

defines a probability measure P (·|B) on A which is called conditional probability
measure given (the hypothesis) B. P (A|B) is called probability of A given B.
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• In multi-step random experiments each connection between two nodes in a tree
diagram refers to a conditional probability. The total probability of a branch of
the tree can be calculated using the following rule:

• Law of total probability: Let (Ω,A, P ) be a probability space andA ∈ A, (Bn)n ∈
A, where Bn are pairwise disjoint sets with A ⊂ ⋃∞

i=1 Bn. Then

P (A) =
∞∑

n=1
P (A ∩Bn) =

∞∑
i=1

P (A|Bn) · P (Bn) .

• Baye’s rule: Let (Ω,A, P ) be a probability space and A ∈ A, (Bn)n ∈ A, where
Bn are pairwise disjoint sets with A ⊂ ⋃∞

i=1 Bn and P (A) > 0. Then, for k ∈ N,

P (Bk|A) = P (Bk) · P (A|Bk)∑∞
i=1 P (A|Bn) · P (Bn) .

A simple yet very common special case with using B and Bc.

• Independence Laws: Let (Ω,A, P ) be a probability space and A,B,A1, A2, ... ∈
A. Then

a) A and B are called (stochastically) independent if

P (A ∩B) = P (A) · P (B) .

b) Ai, i ∈ I are called (joint stochastically) independent if for each finite selection
{i1, ..., is} ⊆ I we have

P

(
s⋂

l=1
Ail

)
=

s∏
l=1

P (Ail
) .

2.2 Distributions
Discrete distributions

• Binomial distribution: A binomial distribution bin(n, p) with parameters n ∈ N
and p ∈ [0, 1] has the PMF

pk = f(k) =
(
n

k

)
pk(1 − p)n−k, k ∈ [0, n] ∩ N0
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• Bernoulli distribution: The special case of a binomial distribution bin(1, p) is
called Bernoulli distribution.

• Poisson distribution: The PMF of a Poisson distribution po(λ) with parameter
λ > 0 is given by

pk = f(k) = λk

k! e
−λ, k ∈ N0 .

• Discrete uniform distribution: The probability measure of a Laplace sapce is a
discrete uniform distribution.

Continuous distributions

• For continuous values one has to redefine some properties of probability distribu-
tions, to prevent the occurrence of infinities (imagine a Laplace space with uncount-
ably infinite many segments).

• Riemann probability density functions: A Riemann-integrable function f :
R → R with

f(x) ≥ 0, x ∈ and
∫ ∞

−∞
f(x) dx = 1

is called Riemann probability density function (PDF).

• Probabilities in the continuous case: Probabilities of (−∞, x] ⊆ R are defined
by the integral

F (x) = P ((−∞, x]) =
∫ x

−∞
f(y) dy, x ∈ R .

The function F : R → [0, 1] is called cumulative distribution function (CDF).
The probability of an interval (a, b] ⊆ R is defined by

P ((a, b]) =
∫ b

a
f(x)dx = F (b) − F (a) .

• Note that in the continuous case for a single x ∈ R always P ({x}) = 0, resulting in
P ((a, b)) = P ([a, b]) = P ([a, b)) = P ((a, b]).

• Uniform distribution: The uniform distribution U(a, b) with parameters a, b ∈ R,
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a < b is defined by the PDF

f(x) = 1
b− a

1[a,b](x) =


1

b−a
, x ∈ [a, b]

0, x ̸∈ [a, b]
.

• Exponential distribution: The exponential distribution Exp(λ) with parameter
λ > 0 is defined by the PDF

f(x) = λe−λx1(0,∞)(x) .

• Weibull distribution: The Weibull distribution Wei(α, β) with parameters α, β >
0 is defined by the PDF

f(x) = αβxβ−1e−αxβ · 1(0,∞)(x) ,

which results in the CDF

F (x) =
(
1 − e−αxβ

)
· 1(0,∞)(x) .

• Power distribution: Power distributions for a parameter α > 0 are defined by the
CDF

F (x) = xα · 1[0,1) .

• Normal distribution / Gaussian distribution: The normal distribution /
Gaussian distribution N(µ, σ2) with parameters µ ∈ R and σ > 0 is defined by
the PDF

φµ,σ2(x) = 1√
2πσ

exp
(

−(x− µ)2

2σ2

)
, x ∈ R.

N(0, 1) is also called the standard normal distribution, for which the PDF is
denoted by φ and the CDF is denoted by Φ.

• Properties of the normal distribution’s CDF: The CDF of the normal distri-
bution obeys the following properties:

– The CDF Φµ,σ2 of N(µ, σ2) is related to the standard normal distribution’s
CDF Φ via

Φµ,σ2(x) = Φ
(
x− µ

σ

)
, x ∈ R .
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– Φ(x) = 1 − Φ(−x), x ∈ R.

– Φ has only an integral representation.

• Other commonly used continuous distributions are e.g. the gamma, Erlang,
χ2 and beta distribution. Related important distributions are the t-distribution and
the F -distribution.

• Support: Let f be a PDF with corresponding CDF F . The set {x ∈ R|f(x) > 0}
is called support of the probability distribution P (or of f or of the CDF F ). It is
therefore denoted as supp(P ), supp(f) of supp(F ).

• Location-scale transformation: Let F be a CDF. The location-scale family of a
distribution with standard CDF F is defined via

Fa,b(x) = F
(
x− a

b

)
, x ∈ R ,

with parameters b > 0 and a ∈ R. a is called location parameter, b is called scale
parameter. F = {Fa,b|Fa,b(x) = F (x−a

b
), x ∈ R; a ∈ R, b > 0} is called location-scale

family of distributions (with standard member F ).

• Location scale and support: Let (α, ω) be the support of a CDF F . The support
of a location scaled CDF Fa,b is given by:

supp(Fa,b) = (a+ bα, a+ bω) .

2.3 Random variables and their distribution
Construction of random variables

• Measurable maps: Let (Ω,A, P ) be a probability space and (Ω′,A′) be a (mea-
surable) space. A map X : Ω → Ω′ is called measurable if

X−1(A′) = {ω ∈ Ω|X(ω) ∈ A′} ∈ A for each A′ ∈ A′ .

The definition of random variable can be extended to more general images.

• Borel’s σ-algebra: Let n ∈ N, (Ω,A, P ) be a probability space and (R,B) be a
measurable space where B denotes Borel’s σ-algebra.

a) A measurable map X : Ω → R is called random variable.

b) If X1, ..., Xn are random variables X = (X1, ..., Xn) is called random vector.
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• Distribution of a random veraible / vector: A random variable / vector X
defines a probability distribution PX via

PX(A) = P
(
{ω ∈ Ω|X(ω) ∈ A}

)
= P (X ∈ A), A ∈ B (or A ∈ Bn) .

PX is called (probability) distribution of X (notation X ∼ PX).

• CDF of random variables: Let X,X1, ..., Xn be random variables defined on a
probability space (Ω,A, P ). Let X = (X1, ..., Xn) be a random vector. Then,

a) the CDF of X is defined by

FX(t) = P (X ≤ t) = P
(
{ω ∈ Ω|X(ω) ≤ t}), t ∈ R .

b) the joint CDF of X1, ..., Xn is defined by

FX(t) = P (X1 ≤ t1, ..., Xn ≤ tn)

= P
(
{ω ∈ Ω|X1(ω) ≤ t1, ... , Xn(ω) ≤ tn}), t ∈ Rn .

c) X1 and X2 are called identically distributed when FX1(t) = FX2(t) for every
t ∈ R. For short we write X1

d= X2.

• Note that X1
d= X2 ⇒ P (X1 ∈ A) = P (X2 ∈ A) for every Borel set A ∈ B.

• Independence of random variables: Let I be a set and Xi, i ∈ I, be random
variables. Then Xi, i ∈ I are called independent if

P (Xi ∈ Ai, i ∈ J) =
∏
j∈J

P (Xi ∈ Ai) ∀ J ⊆ I, |J | < ∞ ∀ Ai ∈ B, i ∈ J .

Roughly speaking: Arbitrary probablilties of combinations of Xi’s are decomosable
into the products of probabilities.

• Properties of independent random variables:

a) If Xi, i ∈ I are independent and gi, i ∈ I, are given functions, then gi(Xi), i ∈
I, are independent as well.

b) X1, ..., Xn are independent if

FX(x) =
n∏

i=1
FXi(xi) ∀ x ∈ Rn.
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c) If X1, ..., Xn are independent and identically distributet (iid) one writes

X1, ..., Xn
iid∼ P .

• Quantile Function: Let X be a random variable with CDF F : R → [0, 1]. Then
F−1 : (0, 1) → R defined by

F−1(y) = inf{x ∈ R|F (x) ≥ y}, y ∈ (0, 1) ,

is called quantile function (QF) of F (or X or PX). Qp = F−1(p), p ∈ (0, 1) is
called the p-th quantile of F .

• Properties of CDF and QF: Let F be a CDF with QF F−1. Then:

– F and F−1 have the properties:

a) F ↗, right continuous, limx→∞ F (x) = 1, limx→−∞ F (x) = 0.
b) F−1 ↗, left continuous.
c) F (x) ≥ y ⇔ x ≥ F−1(y).
d) F continuous, X ∼ F ⇒ F (X) ∼ U(0, 1).
e) Y ∼ U(0, 1) ⇒ F−1(Y ) ∼ F .

– If F is strictly increasing and continuous then Qp is the unique solution of the
equation F (x) = p.

• The α-Quantile of N(0, 1) is often denoted as uα, for which u1−α = −uα holds,
because of the relation Φ(x) = 1 − Φ(−x).

2.4 Discrete Random Vectors and Multivariate Probabil-
ity Distributions

Multivariate discrete distributions

• Multivatiate discrete distribution: Let n ∈ N, T ⊂ Rn be a finite or countable
set and f : Rn → [0, 1] with

∑
(t1,...,tn)T ∈T

f(t1, ..., tn) = 1, f(t1, ..., tn) = 0 if (t1, ..., tn)T ̸∈ T.

Then f is called a (joint) probability mass fumction (PMF) on T or Rn. The set
supp(f) = {(t1, ..., tn)T ∈ Rn|f(t1, ..., tn) > 0} is called support of f . One can
denote t = (t1, ..., tn)T and the equations become shorter.

• Let X = (X1, ..., Xn)T be a random vector and f be a PMF on Rn with support T .
Then, a multivariate probability distribution PX on Rn is uniquely defined by the
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PMF

P (X = t) =

f(t), t ∈ T

0, t ̸∈ T
.

The CDF of X is given by

FX(x) =
∑
t∈T,

ti≤xi, 1≤i≤n

fX(t), x ∈ Rn .

Generating discrete multivariate distributions via independence

• Distribution of vector of independent random variables: Let X1, ..., Xn be
independent random variables with PMFs fXi and supports Ti, i = 1, ..., n respec-
tively. Then, the probability distribution PX = P (X1,...,Xn) of the random vector
X = (X1, ..., Xn)T has the PMF

fX(k) =
n∏

i=1
fXi(ki), k ∈

n×
i=1

Ti .

Furthermore, supp(fX) =×n

i=1 Ti.

• Bermoulli model: Let X1, ..., Xn
iid∼ bin(1, p) with p ∈ [0, 1]. Then, the discrete

probability distribution PX has the PMF

fX(k) = p
∑n

i=1 ki(1 − p)n−
∑n

i=1 ki , k ∈ {0, 1}n .

Furthermore supp(fX) = {0, 1}n.

Generating discrete multivariate disributions via treansformations

• Sums of discrete random variables: Let X and Y be independent random
variables on Z with PMF f and g. Then:

a) The random vector (X, Y )′ has the PMF f (X,Y )(x, y) = f(x)g(y), x, y ∈ Z.

b) The sum X + Y has the PMF h given by

h(k) = P (X + Y = k) =
∑
j∈Z

P (X = j, Y = k − j) =
∑
j∈Z

P (X = k − j, Y = j)

=
∑
j∈Z

f(j) · g(k − j) =
∑
j∈Z

f(k − j) · g(j), k ∈ Z ,

Where the first line also holds, if X and Y are not independent. h is called
convolution of the PMF f and g. It es denoted by h = f ⋆ g.
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• Special discrete convolutions:

– Let X1, ..., Xn
iid∼ bin(1, p) with p ∈ [0, 1]. Then

n∑
i=1

Xi ∼ bin(n, p)

– Let X1, ..., Xn be independent random variables with Xi ∼ po(λi), λi > 0, i =
1, ..., n. Then,

n∑
i=1

Xi ∼ po
(

n∑
i=1

λi

)
.

– Let X1, ...Xn
iid∼ M(1, p1, ..., pm) (see below). Then

n∑
k=1

Xi ∼ M(n, p1, ..., pm) .

Generation discrete multivariate distribution via multivariate PMF

• Multinomial distribution: The multinomial distribution (or polynomial distri-
bution) M(n, p1, ...pm), with n ∈ N and parameters p1, ..., pm ∈ [0, 1] such that∑m

j=1 pj = 1 is defined by the PMF

f(k1, ..., km) =
(

n

k1, ..., km

)
m∏

j=1
p

kj

j , (k1, ..., km)T ∈
{

(i1, ..., ik)T ∈ Nm
0

∣∣∣ m∑
i=1

ij = n

}
.

(
n

k1,...,km

)
= n!

k1!·...·km! is called multinomial coefficient.

• The multivariate distribution can be used to describe random variables which are
described by randomly sampling k1, ..., km instances of which each occurs with prob-
ability p1, ..., pm with k1 + ...+ km = n (See e.g. excercise sheet 7).

• Other multivariate PMF of course exist as well.

Marginalization

• As a conscise notation, we write for a marginal vector of X = (X1, ..., Xn)T and non-
empty subset K = {i1, ..., ik} ⊆ {1, ..., n} with i1 < ... < ik : Xk = {Xi1 , ..., Xik

)T .

• Marginal distribution: Let X = (X1, ..., Xn)T be a random vector. Then:

a) The distribution of

XK = (Xi1 , ..., Xik
)T
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with k(< n) and 1 ≤ i1 < ... < ik ≤ n is called k-dimensional marginal
distribution of PX.

b) The distribution of (a single) Xi is called ith marginal (distribution).

c) Let Ki be the (countable) set of all possible values of Xi. Then:

P (XK = xK) =
∑

xj∈Kj , j ̸∈{i1,...,ik}
P (X1 = x1, ..., Xn = xn) .

• Marginal distributions and independence: Let X = (X1, ..., Xn)T be a random
vector with independent components and marginal PMFs fXj , 1 ≤ j ≤ n as well
as 1 ≤ i1 < ... < ik ≤ n, 1 ≤ k ≤ n. Then, the marginal PMF of (Xi1 , ..., Xik

)T is
given by the product

f (Xi1 ,...,Xik
)(xi1 , ..., xik

) =
k∏

j=1
fXij (xij

) for all (xi1 , ..., xik
).

In case of independence, the joint PMF of X is uniquely specified by the one-
dimensional marginal distributions.

• There are some equations for simple yet important marginal distribution of the
multinomial distribution.

Conditional distributions

• Conditional PMF: Let X = (X1, ..., Xn)T be a random vector with values in H

and ∅ ≠ K,L ⊆ {1, ..., n} with K ∩ L = ∅. Then:

a) The distribution of XK given XL = xL ∈ HL is defined by the conditional
PMF

P (XK = xK |XL = xL) =


P (XL∪K=xL∪K)

P (XL=xL) , P (XL = xL) > 0

P (XK = xK), P (XL = xL) = 0
, xK ∈ HK .

b) The corresponding conditional distribution is denoted by PXK |XL=xL .

• Conditional distributions in the iid-case: Let X be a random vector with iid
component X1, ..., Xn and ∅ ≠ K,L ⊆ {1, ..., n} with K ∩ L = ∅. Then:

PXk|XL=xL = PXk for all xL ∈ R|L| .

• The Multinomial distribution has some nice properties corresponding with con-
ditional distrbutions. Especially each marginal is distributet as: Xi ∼ bin(n, pi),
where (X1, ..., Xm) ∼ M(n, p1, ..., pm).
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2.5 Continuous Random Vectors and Multivariate Prob-
ability Distributions

• Multivariate PDFs: Let n ∈ N and f : Rn → R be a Riemann-integrable function
with

a) f(x) ≥ 0, x ∈ Rn.

b) Norm:
∫
Rn
f(x) dx =

∫ ∞

−∞
...
∫ ∞

−∞
f(x1, ..., xn) dx1, ..., dxn = 1

Then f is called a probability density function (PDF) on Rn. The set supp(f) =
{t|f(t) > 0, t ∈ Rn} is called support of f .

• Multivariate CDFs: Let X = (X1, ..., Xn)T be a random vector and f be a PDF
on Rn with support T . Then, a multivariat distribution PX on Rn is uniquely
specified by the PDF f through the CDF

FX(x) =
∫ x

−∞
f(x) dx =

∫ x1

−∞
...
∫ xn

−∞
f(x1, ..., xn) dx1, ..., dxn , x ∈ Rn .

Futhermore

a) The CDF F is continuous.

b) Probabilities are obtained by

P (ai ≤ Xi ≤ bi, 1 ≤ i ≤ n) =
∫ b

a
f(y) dy =

∫ b1

a1
...
∫ bn

an

f(y1, ..., yn) dx1, ..., dxn

for a = (a1, ..., an)T ∈ Rn, b = (b1, ..., bn)T ∈ Rn with, ai ≤ bi, 1 ≤ i ≤ n.

c) The one-dimensional intervals [ai, bi], 1 ≤ i ≤ n can be replaced by half-open
or open versions.

• Multivariate Marginals: Let X = (X1, ..., Xn)T be a random vector with PDF
fX and ∅ ≠ K ⊆ {1, ..., n}. Then the marginal PDF of Xk = (Xi1 , ..., Xik

)T is
obtained by integrating over all remaining components:

fXK (xK) =
∫
R|Kc|

fX(x) dxKc , xK ∈ R|K| .

• Multivariate Conditional PDFs: Let X = (X1, ..., Xn)T be a random vector
with PDF fX and K,L ⊆ {1, ..., n} with K ∩ L = ∅. Then:
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a) The conditional PDF of XK given XL = xL is defined by

fXK |XL=xL(xK) =


fXL∪K (xL∪K)

fXL (xL)) , fXL(xL) > 0

fXK (xK), fXL(xL) = 0
, xK ∈ HK .

b) The conditional CDF of XK given XL = xL is defined by

FXK |XL=xL(xK) =
∫

tK≤xK

fXK |XL=xL(tK)dtK .

• Multivariate independent continuous random vectors: Let X = (X1, ..., Xn)T

be a random vector with independent components and marginal Riemann PDFs
fXj , 1 ≤ j ≤ n as well as 1 ≤ i1 < ... < im ≤ n, m ≤ n. Then, the marginal PDF
of (Xi1 , ..., Xim)T is given by the product

fXi1 ,...,Xim (xi1 , ..., xim) =
m∏

j=1
fXij (xij

) for all (xi1 , ..., xim).

In case of independence the joint PDF of X is uniquely specified by the one-
dimensional marginal distributions.

• Multivariat continuous conditional probabilties: Let X be a random vector
with iid components X1, ..., Xn and ∅ ≠ K,L ⊆ {1, ..., n} with K ∩ L = ∅. Then

PXK |XL=xL = PXK for all x ∈ R|L| .

In particular, for xL ∈ R|L|,

P (XK ≤ xK |XL = xL) = P (XK ≤ xK), xK ∈ R|K| .

2.6 Transformations of random vectors
• Transformation theorem in R: Let X be a random variable on (Ω,A, P ) with

PDF fX . It exists an open set M ⊆ R with

fX(x) = 0 ∀ x ∈ M c.

Further, T : (R,B) → (R,B) is continuously differentiable mapping with

a) T̃ = T |M is a bijective function.

b) the derivative of T̃ is continuous on M and satisfies

∆(x) = ∂

∂x
T̃ (x) ̸= 0 ∀ x ∈ M .
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Then, the random variable Y = T̃ (X) has the PDF

fY (y) =
fX

(
T̃−1(y)

)
|∆(T̃−1(y))|

1T̃ (M)(y), y ∈ R .

• Transformation theorem in Rp: Let X = (X1, ..., Xp)T be a random vector on
(Ω,A, P ) with PDF fX. It exists an open set M ⊆ Rp with

fX(x) = 0 ∀ x ∈ M c.

Further, T : (Rp,Bp) → (Rp,Bp) is continuously differentiable mapping with

a) T̃ = T |M is a bijective function.

b) all partial derivatives of T̃ is continuous on M

c) the determinant of the Jacobian matrix J (x) satisfies

∆(x) = det(J (x)) = det
(
∂T̃i(x)
∂xj

)
1≤i,j≤p

̸= 0 ∀ x ∈ M .

Then, the random variable Y = T̃ (X) has the PDF

fY(y) =
fX

(
T̃−1(y)

)
|∆(T̃−1(y))|

1T̃ (M)(y), y ∈ Rp .

Note that ∆(T̃−1(y)) is the Jacobian matrix of the mapping T evaluated at T̃−1(y).

• Convolution in the continuous case: Let X and Y be independent random
variables with Riemann PDF f and g, respectively. Then X + Y has the PDF h

given by:

h(z) =
∫ ∞

−∞
f(z − y)g(y) dy =

∫ ∞

−∞
f(x)g(z − x) dx, z ∈ R,

i. e., P (X + Y ∈ (a, b)) =
∫ b

a h(z) dz, a < b.

2.7 Moments, means and variance-covariance matrix
Here and in the following a general assumption is, that all random variables and vectors
are defined on a suitable probability space (Ω,A, P ).
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• Mean / Expectation (value): Let X be a random variable and g : R → R.
Then, the expectation of g(X) is given by (provided, that the sum / integral exists)

Eg(X) =


∑
x ∈ supp(PX)g(x)P (X = x), PX discrete∫

R g(x)fX(x) dx, PX continuous with PDF fX
.

For g(X) = X the value EX is called expectation value or mean.

• Alternatively one can take a look at P g(X) and use

Eg(X) =
∑

t∈supp(P g(X))
tP (g(X) = t) .

• Moment, variance, moment generating function: Let X be a random variable
and k ∈ N. Suppose all expectations exist. Then,

a) E(Xk) is called the kth moment of X.

b) E(X − EX)2 is called the variance of X and denoted by VarX.

c) The function

ψX : D → R, ψ(t) = E(etX), t ∈ D,

is called the moment generating function (MGF) where D ⊆ R denotes the set
of reals where the expectation E(etX) exists (is finite).

• Covariance and correlation: Let X, Y be random variables with existing second
moments. Then:

a) Cov(X, Y ) = E [(X − EX)(Y − EY )] is called covariance of X and Y .

b) If Var(X),Var(Y ) > 0 then

Corr(X, Y ) = Cov(X, Y )√
Var(X)Var(Y )

is called correlation of X and Y .

• Properties of means: Let X, Y,X1, ..., Xn be random variables with existing
means and a ∈ R. Then:

a) E(aX) = aEX, E(a) = a

b) E(X + Y ) = EX + EY

c) X ≤ Y ⇒ EX ≤ EY
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d) If X1, ..., Xn are independent, then

E
(

n∏
i=1

Xi

)
=

n∏
i=1

EXi .

• Properties of variance: Let X, Y be random variables with existing mean and
variance, respectivley. Then:

a) VarX = E(X − EX)2 = EX2 − E2X

b) Var(a+ bX) = b2VarX, a, b ∈ R

c) X ≤ Y ⇒ EX ≤ EY

d) For a random variable X with EX = µ, VarX = σ2 > 0, the standardisation

Y = X − EX√
VarX

satisfies EY = 0, VarY = 1.

• Properties of covaraince and corraltion: Let X, Y, Z,X1, ..., Xn be random
variables with existing mean and variance, respectivley. Then:

a) Cov(X, Y ) = E[(X − EX)(Y − EY )] = E(XY ) − EXEY

b) Cov(X,X) = VarX, Cov(X, Y ) = Cov(Y,X)

c) Cov(a+ bX, c+ dY ) = bdCov(X, Y ), a, b, c, d ∈ R

c) Cov(X, a+ bY + c+ dZ) = bCov(X, Y ) + dCov(X,Z), a, b, c, d ∈ R3

d) X, Y independent implies Cov(X, Y ) = 0 (not vice versa).

e) The correlation is bounded by −1 and 1:

Corr(X, Y ) = Cov(X, Y )√
VarX · VarY

∈ [−1, 1] (if VarX,VarY > 0) .

f) If X1, ..., Xn are uncorrelated then

Var
(

1
n

n∑
i=1

Xi

)
= 1
n2

n∑
i=1

VarXi ,

which for X1, ..., Xn iid can be further simplified to ... = VarX1/n.

• Expectation of random vectors and matrices:

a) The expectation of a random vector X = (X1, ..., Xn)T is defined by the vector
of means EX = (EX1, ...,EXn)T .

3Meaning one can somewhat apply the distributive property to covariances.

36



b) The expectation of a random matrix X = (Xij)1≤i≤p, 1≤j≤q is defined by the
matrix of means EX = (EXij)1≤i≤p, 1≤j≤q.

• Transformations of the mean:

a) Let X = (X1, ..., Xp)T be a p-dimensional random vector and A ∈ Rk×p, b ∈
Rk. Then:

E(AX + b) = AEX + b.

b) Let Z1, ...,Zn be a p-dimensional random vectors and A1, ..., An ∈ Rk×p. Then:

E
 n∑

j=1
AjZj

 =
n∑

j=1
Aj E(Zj).

• Variance-covariance matrix: Let X = (X1, ..., Xp)T , Y = (Y1, ..., Yp)T be ran-
dom vectors. Then the covariance matrix of X and Y is defined by

Cov(X,Y) =


Cov(X1, Y1) ... Cov(X1, Yq)

... . . . ...
Cov(Xp, Y1) ... Cov(Xp, Yq)

 .

The variance-covariance matrix of X is defined as Σ = Cov(X,X) := Cov(X). This
can be rewritten using the random matrix CX,Y = (X − EX)(Y − EY)T .

• Properties of the Covariance matrix: Using the notation from above, one gets
for A ∈ Rk×p, B ∈ Rr×q, b ∈ Rk, c ∈ Rr:

a) Cov(AX + b, BY + c) = ACov(X,Y)BT .

b) Cov(AX + b) = ACov(X)AT .

c) Let (X,Y)T denote the combined vetor of X and Y. Then:

Cov
X

Y

 =
 Cov(X) Cov(X,Y)
Cov(Y,X) Cov(Y)

 .
d) Cov(X,Y) = Cov(Y,X)T .

• One also denotes shortly ΣXY = Cov(X,Y).

• Definitenes of the covariance matrix: Let X be a p-dimensional random vector.
Then Σ = Cov(X) is a positive semi-definite matrix.
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• MGF for random vectors: Let X = (X1, ..., Xk)T be a k-dimensional random
vector. Suppose all expectations exist. Then the function

ψX : D → R, ψX(t) = E
(
etT X

)
, t = (t1, ..., tk)T ∈ D,

is called moment generating function where D ⊆ Rk denotes the set of real vectors
where the expectation E(etT X) exists.

• Propertires of the MGF:

a) For a random vector X = (X1, ..., Xk)T the MGF can be written as

ψX(t) = E
(
etT X

)
= E

exp
 k∑

j=1
tjXj

 , t ∈ D .

b) ψX(0) = 1.

c) If X is a discrete random vector with finite support, then ψX always exists.

• Moments and MGF: Let X = (X1, ..., Xk)T be a random Vector with MGF ψX

such that ψX exists for some open set M ⊆ Rk containing the zero vector. Then:

a) Let ψY be the MFG of a random vector Y.

If ψX(t) = ψY(t) for t ∈ D ⊆ Rk, where D is an open set containing the zero
vector, then X d=, that is the MGF determines the distribution uniquely.

b) ψX is infinetly often differentiable on M and, for l1, ..., lk ∈ N0, we have

E
 k∏

j=1
X

lj
j

 = ∂l1+...+lk

∂l1t1...∂lktk
ψX(t)

∣∣∣
t=0

.

• Properties of the MGF:

a) The MGF of a marginal distribution (say of XK) is obtained by choosing
t = (t1, ..., tk)T with tj = 0, j ̸∈ K.

b) Let X = (X1, ..., Xk)T be a random vector, A ∈ Rm×k, b ∈ Rm, and Y =
AX + b. Then:

ψY(t) = etT b · ψX(AT t) ∀ t (such that the MGF exists).

c) If X1, ...,Xk are independent random vectors and X = (XT
1 , ...,XT

k )T and S =
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∑k
j=1 Xj, then

ψX(t1, ..., tk) =
k∏

j=1
ψXj

(tj) ∀ t1, ..., tk (such that the MGF exist).

ψS(t) =
k∏

j=1
ψXj

(t) ∀ t (such that the MGF exist).

• Conditional expectations: Let X,Y be random vectors with joint PMF or Rie-
mann PDF fX,Y. Then:

a) Conditional expectations are defined via the conditional PMF or PDF:

E(X|Y = y) =


∑

x∈supp(P X|Y=y)
xfX|Y=y discrete case

∫
xfX|Y=y(x) dx continuous case

.

b) The same approach can be used to define conditional expectations of functions
of random vectors (i.e. conditional (co-)variances). For some function h we
get:

E
(
h(X,Y)

∣∣∣Y = y
)

= E
(
h(X,y)

∣∣∣Y = y
)

c) If X,Y are independent random vectors, then

E
(
h(X,Y)

∣∣∣Y = y
)

= E
(
h(X,y)

)
.

3 Multivariate Normal Distribution
3.1 Definition of the Normal Distribution

• Univariate Normal Distribution: The univariate normal distribution N(µ, σ2), σ >
0 is defined by the PDF

φµ,σ2(x) = 1√
2πσ

exp
(

−(x− µ)2

2σ2

)
, x ∈ R .

For Z ∼ N(0, 1) it is X = µ+ σZ ∼ φµ,σ2 .

• Multivariate Normal Distribution: Let Z1, ..., Zk
iid∼ N(0, 1), Z = (Z1, ..., Zk)T

and µ ∈ Rp, A ∈ Rp×k. Then

a) Z has a k-dimesional standard normal distribution, i.e. Z ∼ Nk(0, Ik).

b) X = µ + AZ has a p dimensional normal distribution with parameters µ and
Σ = AAT , i.e. X ∼ Np(µ,Σ) and EX = µ, Cov(X) = Σ.
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• To generate a multivariate normal distribution with given µ and Σ ∈ Rp×p
≥0 from a

Z random vector as defined above, one has to take into account the SVD (or EVD)
of Σ: X = µ+ Σ1/2Z ∼ Np(µ,Σ), where Σ1/2 = V Λ1/2V T .

3.2 PDF and MGF
• Multivariate PDF of Normal Distribution: Let X ∼ Np(µ,Σ) with µ ∈ Rp,

Σ ∈ Rp×p
>0 and determinant det(Σ). Then X has the PDF

fX(x) = 1√
(2π)p det(Σ)

exp
(

−1
2(x − µT Σ−1(x − µ))

)
, x ∈ Rp .

• MGF of the multivariate Normal Distribution: Let X ∼ Np(µ,Σ) with µ ∈
Rp, Σ ∈ Rp×p

≥0 . Then X has the MGF

ψX(t) = exp
(

tTµ+ 1
2tT Σt

)
, t ∈ Rp .

3.3 Moments, Expectations and Conditionals
• Parameters and marginals of a multivariate normal distribution: Let X ∼

Np(µ,Σ) with µ ∈ Rp, Σ ∈ Rp×p
≥0 and ∅ ̸= K ⊆ {1, ..., p} and ΣK,K = Cov(XK).

Then

a) EX = µ

b) Cov(X) = Σ

c) XK ∼ N(µK ,ΣK,K) (i.e. ’marginals are normal’.)

• Conditionals of a multivariate normal distribution: Let X ∼ Np(µ,Σ) with
µ ∈ Rp, Σ ∈ Rp×p

>0 and ∅ ̸= K,L ⊆ {1, ..., p}, K ∩ L = ∅, k = |K| Further let
ΣK,L = Cov(XK ,XL) and ΣKK|L = ΣK,K − ΣK,LΣ−1

L,LΣT
K,L. Then:

a) XK |XL = xL (i.e. ’conditionals are normal’.)

b) E(XK |XL = xL) = µK + ΣK,LΣ−1
L,L(xL − µL). The matrix ΣK,LΣ−1

L,L is
called regression matrix.

c) Cov(XK , |XL = xL) = ΣKK|L,

d) XK and XL are independent if and only if ΣK,L = 0.

e) X = (X1, ..., Xp)T ∼ Np(0, Ip) ⇔ X1, ..., Xp
iid∼ N(0, 1)

f) X = (X1, ..., Xp)T ∼ Np(µ,Σ) with a diagonal matrix Σ = diag(σ2
1, ..., σ

2
p) ⇔

X1, ..., Xp are independent random variables with Xj ∼ N(µj, σ
2
j ), 1 ≤ j ≤ p.
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• Translations of normal distributed random vectors: Let X ∼ Np(µ,Σ) with
µ ∈ Rp, Σ ∈ Rp×p

≥0 and a ∈ Rk, B ∈ Rk×p, 1 ≤ k ≤ p. Then:

Y = a +BX ∼ Nk(a +Bµ,BΣBT ).

In particular for Σ ∈ Rp×p
>0 and Σ−1/2 = (Σ1/2)−1 it is Y = Σ−1/2(X−µ) ∼ Np(0, Ip).

The latter transformation is also called Mahalanobis transformation and corre-
sponds with the euclidean norm: ||Y||2 = ||X − µ||2Σ.

3.4 Combinations and Transformations
• Sum of normal distributions: Let X = (X1, ..., Xp)T ∼ Np(µ,Σ) with Σ =

(σij)i,j and X̄ = 1
p

∑p
j=1 Xj. Then:

X̄ = 1
p

1T
p X ∼ N

1
p

p∑
j=1

µj,
1
p2 1T

p Σ1p

 = N

1
p

p∑
j=1

µj,
1
p2

∑
i,j

σij

 .
This can be dramatically simplified if X1, ..., Xn

iid∼ N(µ, σ2):

X̄ ∼ N(µ, σ2/n) ,
√
n
X̄ − µ

σ
∼ N(0, 1) .

• Independence of rotated normal distributed vectors: Let X ∼ Np(µ,Σ) with
µ ∈ Rp,Σ ∈ Rp×p

>0 . Then for A ∈ Rk×p, B ∈ Rr×p with k, r ∈ N we get

AX and BX are independent if and only if AΣBT = 0.

• Normal distribution and χ2 distribution: Let X1, ..., Xn
iid∼ N(0, 1), then

X2
1 ∼ χ2(1) = Γ

(1
2 ,

1
2

)
and

n∑
i=1

X2
i ∼ χ2(n) = Γ

(1
2 ,

n

2

)

• Distribution of variance and empirical variance: Let X1, ..., Xn
iid∼ N(µ, σ2)

with µ ∈ R, σ > 0 and

σ̂2
µ = 1

n

n∑
j=1

(Xj − µ)2, σ̂2 = 1
n− 1

n∑
j=1

(Xj − X̄)2 . (3.1)

Then:

a) n
σ2 σ̂

2
µ ∼ χ2(n) .

b) X̄ and σ̂ are independent.

c) n−1
σ2 σ̂

2 ∼ χ2(n− 1), if n ≥ 2.
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• Cochran Theorem: Let X ∼ Np(0, σ2Ip) and A1, ..., An ∈ Rp×p
≥0 be non-negative

matrices with ∑n
j=1 Aj = Ip. Let rj = rank(Aj), 1 ≤ j ≤ n. Then the following

conditions are equivalent:

(i)) ∑n
j=1 rj = p .

(ii)) 1
σ2 XTAjX ∼ χ2(rj), 1 ≤ j ≤ n

(iii)) X′AjX, q ≤ j ≤ n are independent.

• Relation between χ2 and F distribution: Let U ∼ χ2(k) and V ∼ χ2(m) be
independent random variables (k,m ∈ N). Then:

1
k
U

1
m
V

∼ F (k,m).

• Multi-Sample Variance: Let X1, ..., Xn1
iid∼ N(µ1, σ

2
1) and Y1, ..., Yn2

iid∼ N(µ2, σ
2
2)

be independent random variables with n1, n2 ≥ 2 and σ̂1, σ̂2 as in equation (3.1)
accordingly. Then:

a) It holds:

σ̂2
1/σ

2
1

σ̂2
2/σ

2
2

∼ F (n1 − 1, n2 − 1)

b) For σ1 = σ2 = σ:

(n1 − 1)σ̂2
1 + (n2 − 1)σ̂2

2
σ2 ∼ χ2(n1 + n2 − 2)

• Additional statistics: Let X1, ...,Xn
iid∼ N(µ,Σ) with µ ∈ Rp, Σ ∈ Rp×p

>0 and
n > p. Then:

a) The average generalizes naturally:

X̄ = 1
n

n∑
i=1

Xi ∼ Np(µ, 1
n

Σ).

b) n||X̄ − µ||2Σ ∼ χ2(n).

For the sample covariance matrix

Σ̂ = 1
n− 1

n∑
i=1

(Xi − X̄)(Xi − X̄)T

it holds:
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a) EΣ̂ = Σ

b) (n− 1)Σ̂ is Wishart-distributed

c) n||X̄ −µ||2Σ̂ is Hotelling-T 2-distributed with parameters p and n− 1 (deoted as
Tp,n−1) where if Y ∼ Tp,m then m−p+1

mp
Y ∼ F (p,m− p+ 1).

4 Simulation of Random Variables with given Dis-
tributions

4.1 Methods using Quantile Functions
• Inversion Method: Let U1, ..., Un

iid∼ U(0, 1) and F be a (univariate) CDF with
quantile function F−1. Then, for Xi = F−1(Ui), 1 ≤ i ≤ n,

X1, ..., Xn
iid∼ F.

• This method is easy to apply, if the quantile function F−1 has a known explicit
form.

• Convolution Method: Let U1, ..., Un·m
iid∼ U(0, 1) and F be a (univariate) CDF

with quantile function F−1. Then, for Xi = F−1(Ui), 1 ≤ i ≤ n · m, and Zj =∑m·j
k=m·(j−1)+1 Xk, 1 ≤ j ≤ n,

Z1, ..., Zn
iid∼ FZ .

• Transformation Method: Let U1, ..., Un·m
iid∼ U(0, 1) and F be a (univariate) CDF

with quantile function F−1. Let T : Rm → Rk. Then, for Xi = F−1(Ui), 1 ≤ i ≤
n ·m, and Zj = T

(
X(j−1)m+1, ..., Xjm

)
1 ≤ j ≤ n,

Z1, ...,Zn
iid∼ FZ = F T (X1,...,Xm).

• Box-Muller Method: Let U1, U2
iid∼ U(0, 1) and

X1 =
√

−2 ln(U1) cos(2πU2) , X2 =
√

−2 ln(U1) sin(2πU2).

Then (X1, X2)T ∼ N2(0, I2) or equivalently X1, X2
iid∼ N(0, 1).

4.2 General Method
• Acceptance-Rejection Method: Let U ∼ U(0, 1) and X be a k-dimensional

random vector with PDF f independent of U . Then:
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a) (X, cUf(X))T is uniformly distributed on the serA =
{
(x,u)T | x ∈ Rk, 0 ≤ u ≤ cf(x)

}
,

where c > 0 is an arbitrary constant.

b) If (X, U)T is uniformly distributed on A then X has PDF f .

• Acceptance-Rejection Algorithm: Let f be a k-dimensional Riemann PDF and
g : Rk → [0,∞] be a Riemann integrable function on Rk with

0 ≤ f(x) ≤ g(x), x ∈ Rk .

Then

a) gc defined by gc(x) = g(x)/c with c =
∫
g(x) dx < ∞ is a Riemann PDF.

b) A random value X generated by the following algorithm has the PDF f .

1) Repeat: Generate idependent random variates U ∼ U(0, 1) and X ∼ gc

Until: U ≤ f(X)/g(X)
2) Return: X.

5 Random Vectors and Limit Theorems
5.1 Strong Law of Large Numbers

• Almost sure Convergence: Consider a random vector X and a sequence of ran-
dom vectors X(1),X(2), ... on a probability space (Ω,A, P ). Then, (X(n))n converges
almost surely (a. s.) to X if

P
(

lim
n→∞

X(n) = X
)

= 1 .

Notation: X(n) n→∞−→ X a.s., or X(n) a.s.−→ X.

• Strong Law of Large Numbers: Let X(1),X(2), ... be an iid sequence of random
vectors in a probability space (Ω,A, P ) with existing mean µ = EX1. Then

1
n

n∑
j=1

Xj
a.s.−→ µ.

• Continuous mapping theorem for almost sure Convergence: Let X(n) a.s.−→
a ∈ Rk and g : Rk → Rm be a function continuous in a ∈ Rk. Then:

g
(
X(n)

) a.s.−→ g(a) .

• Specific mappings and almost sure Convergence: Let X(n) a.s.−→ a ∈ Rk and
Y(n) a.s.−→ b ∈ Rk.
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a) Let A ∈ Rm×k. Then, g defined by g(x) = Ax is a continuous function. Hence:

AX(n) a.s.−→ Aa .

b) ||X(n)||2
a.s.−→ ||a||2.

c) X(n) + Y(n) a.s.−→ a + b ∈ Rk.

d) X(n)T Y(n) a.s.−→ aT b ∈ R.

5.2 Central Limit Theorem
• Convergence in distribution: Let X1, X2, ... be a sequence if (univariate) random

variables (with CDFs FX1 , FX2 , ...) and X be a random variable with CDF FX .
Then, (Xn)n converges in distribution to X (notation Xn

d→ X), if

FXn(t) n→∞−→ FX(t) for any continuity point t of FX .

Let X(1),X(2), ... be a sequence of k-dimensional random vectors and X be a k-
dimensional random vector. Then:

X(n) d→ X ⇔ tT X(n) d→ tT X for all t ∈ Rk

That means every linear combination of the components of X(n) converges in distri-
bution to the same linear combination of X.

• (A Version of) The Central Limit Theorem (CLT): Let X1, X2, ... be a se-
quence of iid (univariate) random variables with EX1 = µ and 0 < Var(X1) = σ2 <

∞. Then, using

S∗
n = 1

σ
√
n

(
n∑

i=1
Xi − nµ

)
= 1
σ/

√
n

·
( 1
n

∑
−µ

)
=

√
n
X̄n − µ

σ

the following convergence holds:

lim
n→∞

P (S∗
n ≤ t) = Φ(t) ,

where Φ(t) is the CDF of the standard normal distribution. That means §∗
n

d→
N(0, 1).

• This can be rewritten to

P

(
n∑

i=1
Xi ≤ t

)
≈ Φ

(
t− nµ√
nσ

)
for large n .
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• For the arithmetic mean of iid random variables we get

X̄n = 1
n

n∑
i=1

Xi
asymp∼ N

(
µ,
σ2

n

)
.

5.3 Multivariate Central Limit Theorem
• Multivariate CLT: Let X(1),X(2), ... be a sequence of iid random vectors with

EX(1) = µ ∈ Rp and covariance matrix Cov(X(1)) = Σ ∈ Rp×p
≥0 . Then for S∗

n =
√
n
(

1
n

∑n
i=1 X(i) − µ

)
:

S∗
n

d→ Np(0,Σ) .

• Convergence of random vectors (Slutsky Theorem): Let X(1),X(2), ... and
Let Y(1),Y(2), ... be sequences of m- and k-dimensional random vectors, respectively,
a ∈ Rk be a constant, and X be an m-dimensional random vector with X(n) d→ X
and Y(n) d→ a. Further, let g : Rm×Rk → Rs be a function such that g is continuous
in (x, a),x ∈ Rm. Then:

g
(
X(n),Y(n)

) d→ g(X, a).

• Short written special cases:

a) g
(
X(n)

) d→ g(X).

b) Let An ∈ Rm×k, n ∈ N with limn→∞ An = A. Then AnX(n) d→ AX.

c) ||X(n)||2
d→ ||X||2.

d) X(n) + Y(n) d→ a + b.
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